Exhibit 300: Capital Asset Plan and Business Case Summary Part I: Summary Information And Justification (All Capital Assets) Section A: Overview (All Capital Assets) 1. Date of Submission: 2010-03-19 19:03:18 2. Agency: 006 3. Bureau: 48 4. Name of this Investment: NOAA/OCIO/ NOAA R&D High Performance Computing System 5. Unique Project (Investment) Identifier: 006-48-01-17-01-3804-00 - 6. What kind of investment will this be in FY 2011?: Mixed Life Cycle - Planning - Full Acquisition - Operations and Maintenance - Mixed Life Cycle - Multi-Agency Collaboration - 7. What was the first budget year this investment was submitted to OMB? * - 8. Provide a brief summary and justification for this investment, including a brief description of how this closes in part or in whole an identified agency performance gap; this description may include links to relevant information which should include relevant GAO reports, and links to relevant findings of independent audits. This investment provides the computational resources necessary to support continued advances in the environmental modeling capabilities and addresses other HPC requirements that may arise within NOAA and at other partner agencies. IT capital investment includes the HPC systems, complementary storage devices and interconnects, communications hardware interfaces, software, networking equipment, system maintenance, support services, IT security, and necessary infrastructure enhancements. This Exhibit represents a coordinated and centralized capital planning effort for the three NOAA HPC organizations, and is intended to improve the acquisition process and to achieve economies of scale through consolidation of system requirements and a reduced number of individual acquisitions. NOAA's R&D HPCS resources enable scientists to attack long-lead-time problems associated with the physical processes that govern the behavior of the atmosphere and the ocean. Advanced climate models are the only means for distinguishing between natural and forced climate variations, assessing future impacts, and hence providing a capability to adapt to climate change and to explore mitigation strategies. These models are crucial for understanding some of the most critical climate issues of today. Major economic decisions of national importance are being made on issues impacted by climate without being based on the best possible science. These resources will also be utilized for a number of shorter-range meteorological research projects, including the development of next generation weather and climate forecast models, National Test Bed, and Satellite Data Assimilation projects. They will also facilitate applied meteorological research and development for purposes of improving and creating short-term warning and weather forecast systems, models, and observing technology. - a. Provide here the date of any approved rebaselining within the past year, the date for the most recent (or planned)alternatives analysis for this investment, and whether this investment has a risk management plan and risk register. - 9. Did the Agency's Executive/Investment Committee approve this request? * a.If "yes," what was the date of this approval? * - 10. Contact information of Program/Project Manager? - Name: * - Phone Number: * - Email: * #### 11. What project management qualifications does the Project Manager have? (per FAC-P/PM)? * - Project manager has been validated according to FAC-PMPM or DAWIA criteria as qualified for this investment. - Project manager qualifications according to FAC-P/PM or DAWIA criteria is under review for this investment. - Project manager assigned to investment, but does not meet requirements according to FAC-P/OM or DAWIA criteria. - Project manager assigned but qualification status review has not yet started. - No project manager has yet been assigned to this investment. ## 12. If this investment is a financial management system, then please fill out the following as reported in the most recent financial systems inventory (FMSI): | Financial management system name(s) | System acronym | Unique Project Identifier (UPI) number | |-------------------------------------|----------------|--| | * | * | * | - a. If this investment is a financial management system AND the investment is part of the core financial system then select the primary FFMIA compliance area that this investment addresses (choose only one): * - computer system security requirement; - internal control system requirement; - o core financial system requirement according to FSIO standards; - Federal accounting standard; - U.S. Government Standard General Ledger at the Transaction Level; - this is a core financial system, but does not address a FFMIA compliance area; - Not a core financial system; does not need to comply with FFMIA Section B: Summary of Funding (Budget Authority for Capital Assets) 1. | | Table 1: SUMMARY OF FUNDING FOR PROJECT PHASES (REPORTED IN MILLIONS) (Estimates for BY+1 and beyond are for planning purposes only and do not represent budget decisions) | | | | | | | | | | |-------------------------------------|--|--------------|-------------|----------------|----------------|-------------|---------------|--------------------|-------|--| | | PY1 and earlier | PY 2009 | CY 2010 | BY 2011 | BY+1 2012 | BY+2 2013 | BY+3 2014 | BY+4 and
beyond | Total | | | Planning: | * | * | * | * | * | * | * | * | * | | | Acquisition: | * | * | * | * | * | * | * | * | * | | | Subtotal Planning & Acquisition: | * | * | * | * | * | * | * | * | * | | | Operations & Maintenance : | * | * | * | * | * | * | * | * | * | | | Disposition
Costs
(optional): | * | * | * | * | * | * | * | * | * | | | SUBTOTAL: | * | * | * | * | * | * | * | * | * | | | | | Government F | TE Costs sh | ould not be ir | ncluded in the | amounts pro | ovided above. | | | | | Government FTE Costs | * | * | * | * | * | * | * | * | * | | | Number of FTE represented by Costs: | * | * | * | * | * | * | * | * | * | | | TOTAL(including FTE costs) | * | * | * | * | * | * | * | * | * | | 2. If the summary of funding has changed from the FY 2010 President's Budget request, briefly explain those changes: * #### Section C: Acquisition/Contract Strategy (All Capital Assets) 1. | | Table 1: Contracts/Task Orders Table | | | | | | | | | | | | |----------------------------------|---|---|--|------------------|---|--------|--|-----------------------------------|--|--|---|--| | Contract or Task Order
Number | Type of
Contract/Task
Order (In
accordance
with FAR Part
16) | | If so what
is the date
of the
award? If
not, what
is the
planned
award
date? | of
Contract/T | End date
of
Contract/T
ask Order | Task | Is
this
an
Inter
agen
cy
Acqu
isitio
n?
(Y/N) | perfo
rman
ce
base
d? | Com
petiti
vely
awar
ded?
(Y/N) | What, if any, alternative financing option is being used? (ESPC, UESC, EUL, N/A) | | | | DG133H07CN0002 | Firm Fixed
Price | Υ | 2006-05-05 | 2006-10-02 | 2010-06-30 | \$61.0 | * | * | * | * | * | | - 2. If earned value is not required or will not be a contract requirement for any of the contracts or task orders above, explain why: - 3. Is there an acquisition plan which reflects the requirements of FAR Subpart 7.1 and has been approved in accordance with agency requirements? * - a. If "yes," what is the date? * #### Section D: Performance Information (All Capital Assets) | | | Tak | ole 1: Performand | ce Information Ta | ble | | | |-------------|--|---------------------|-------------------------|--|--|---|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | 2009 | 3.2 Advance understanding of climate variability and change. | * | * | Decadal predictive skill in North America surface temperature | Quantification of
climate model
validation is
insufficient | Refine
measures of
predictive skill
to monitor the
reduction of
uncertainty in
climate models | New metrics, that reflect the increased complexity of new coupled models, have been utilized to validate the climate and Earth System models that will be used in the next IPCC report. | | 2007 | 3.2 Advance understanding of climate variability and change. | • | • | Implement at
least one new
or updated
component into
the Earth
System Model | Uncertainty in
climate model
projections
remains higher
than desirable | Decrease uncertainty in climate system processes and long-term climate projections measured through improvements in Earth System models | Completely new atmospheric physics and land models complement increased resolution in
all Earth System Model components in the model being developed for the IPCC Fifth Assessment Report. | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | * | • | Implement at
least one new
or updated
component into
the Earth
System Model | Uncertainty in
climate model
projections
remains higher
than desirable | Decrease uncertainty in climate system processes and long-term climate projections measured through improvements in Earth System models | The development of two Earth System Models, using two different ocean models, a new coupled physical climate model that includes interactive chemistry and aerosols, and new high-resolution coupled models is complete. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Decadal predictive skill in North America surface temperature | Quantification of
climate model
validation is
insufficient | Measure
predictive skill
to validate the
reduction of
uncertainty in
climate models | Techniques for assimilating ocean observations into a coupled model to develop initial conditions for decadal prediction can replicate significant features of the ocean s circulation | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|--|--|---|---|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | 2009 | 3.2 Advance understanding of climate variability and change. | * | * | Perform enhanced climate scenarios designed to address specific decision issues regarding climate change | Perform climate
model scenarios
with current
physics-only
climate models,
as resources
permit. | Simulate 4000
equivalent
model years
towards abrupt
climate change | GFDL s IPCC AR4 model, CM2.1, and new high-resolution versions of this model, have been used to run centuries of control experiments, which will be examined for their proclivity for rapid climate events. | | | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Perform enhanced climate scenarios designed to address specific decision issues regarding climate change | Perform climate
model scenarios
with current
physics-only
climate models,
as resources
permit. | Simulate 7800 equivalent model years to clarify natural systems uptake of carbon and to provide climate information for assessment report | Over 8000 equivalent model years of climate and Earth System model integrations have been completed | | | | 2005 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of
terabytes of
climate model
data, with
analysis tools,
available via the
web | 2 terabytes of
data available;
minimal tools | 5 terabytes of
climate model
data, and
analysis tools,
available via the
web | 6.8 terabytes of climate data available; display and download available via Live Access Server; analysis and graphical display provided by Grid Analysis and Display System | | | | 2005 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Contract
benchmark
suites at GFDL | 64,000
cumulative
contract
benchmark
suites delivered
to date | Total contract
benchmark
suites delivered
= 155,000 | All contracted suites delivered | | | | 2005 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Aggregate
performance
increase for
FSL HPCS | Extant FSL
HPCS Linpack
Benchmark
performance | Goal of 1.8-2.0X
aggregate
performance
increase | 1.85X
performance
increase | | | | 2006 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Determination of optimal WRF modeling core to support the new Rapid Refresh Function during simultaneous execution of WRF and WRF-RUC (Rapid Update Cycle) | Simultaneous
execution of a
single WRF
core and a
single
WRF-RUC | Simultaneous
execution of two
WRF cores and
one WRF-RUC | Simultaneous execution of two WRF-RUC cores and one WRF core; statistics have been compiled to facilitate a decision on which WRF-RUC core will become the standard. | | | | 2005 | 3.2 Advance understanding of climate | * | * | Resolution of
WRF (Weather
Research and | CONUS scale
weather
forecast model | CONUS scale
weather
forecast model | CONUS scale
weather
forecast model | | | | | | Tab | ole 1: Performand | ce Information Ta | ıble | | | |-------------|---|---------------------|-------------------------|---|--|---|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | variability and change. | | | Forecasting)
model CONUS
scale weather
forecast mode | at 13kms | at 10kms | running at 5 km | | 2005 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Implementation
of a high
resolution
version of CM2
coupled climate
model | Climate models
lack resolution
to distinguish
regional effects
of climate
change.
Baseline is 2
degrees | Develop high
resolution (1
degree) global
coupled climate
model to
examine
regional climate
change | High-resolution
climate model
implemented
and undergoing
performance
evaluation | | 2009 | 3.2 Advance understanding of climate variability and change. | • | • | % of system availability | 97% | At the discretion of the Government the vendor will either deliver additional equipment to make up for any loss of availability below 97% or the Government will reduce its monthly lease payments by the % of time the system was unavailable. | 97.39% | | 2005 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Additional
enhanced
climate
scenarios
performed | 1800 equivalent
model years
simulated to
date | Simulate 3000 equivalent model years to clarify natural systems uptake of carbon and to provide climate information for assessment report | Over 3000
equivalent
model years
simulated | | 2006 | 2.3 Advance the development of global e-commerce and enhanced telecommunicati ons and information services. | * | * | Availability of
the operational
RUC secondary
backup | Support NCEP
as secondary
backup for the
operational
RUC in
high-availability
mode at 99%
availability | Support NCEP
as secondary
backup for the
operational
RUC with best
effort, targeting
minimum 95%
availability, due
to lack of
funding | Maintained the
operational
RUC secondary
backup at
98.9%
availability. | | 2006 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | % availability of
legacy HPCS at
FSL | 100%
availability of
legacy system
for 6 months
prior to delivery
of replacement
system (with
funding) | Graceful degradation of legacy system though component cannibalization, maintaining minimum of 80% availability for entire year, due to lack of funding | Maintained 97%
availability for
iJet and 97.7%
availability for
eJet. | | 2006 | 3.2 Advance understanding of climate | * | * | Length of storage time before new data | Retain all data
saved to the
HSMS | Implement a data storage policy to age off | Implemented
2.5 years data
storage policy | | | | Tab | ole 1: Performano | e Information Ta | able | | | |-------------|--|---------------------|-------------------------|--|--|---|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual
Results | | | variability and
change. | | | storage media
must be
purchased | | data after 2.5
years in order to
contain data
storage costs
due to lack of
funding | and reduced
storage costs
through reuse of
tapes by more
than \$7,000
annually at
current usage
rate. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Response time | Escalation Levels: Level 0 = 1 business hour; Level 1 = 3 business hours; Level 2-3 = priority/issue dependant | These response times are specified in the HPC R&D contract. During first year of the contract the timeliness and effectiveness of escalation process will be monitored and adjustments made as necessary. | The contractor was successful in meeting these response times a majority of the time. The project team tracks help desk tickets on a weekly basis to ensure that the contractor is performing. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Implementation
of Integrated
Management | Initial Integrated
Management
processes in
place | Refined and
more complete
processes to be
defined and
implemented
during FY07. | Resource allocation process successfully implemented. Process for collecting quarterly metrics implemented. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Concurrent
execution of
atmospheric
models on the
NOAA R&D
HPCS | Atmospheric
models run on
the NOAA
operational
HPCS | Atmospheric
models (NMM,
WRF-EM, GFS)
to run
concurrently on
the NOAA R&D
HPCS | All running on
the NOAA
Boulder HPCS
supporting
research
projects. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Benchmark
suites | 63,073
benchmark
suites | 146,066
accumulated
benchmark
suites | 167,052
delivered. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Performance
Increase (X) | 2.93X level of
performance
over current
baseline offered
at initial delivery | Successful acceptance of replacement system for NCEP that meets contracted availability and enhanced benchmark performance requirements | 3.13X level of performance was delivered. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | % of data availability | 99% | At the discretion of the Government the Vendor will either deliver additional equipment to make up for any | 99% | | | | Tab | ole 1: Performand | ce Information Ta | able | | | |-------------|--|---------------------|-------------------------|---|--|---|---| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | | | | loss of availability below 99% or the Government will reduce its monthly lease payment by the % of time that the data was unavailable. | | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Provide focused
assessment
reports based
on climate
scenarios | Contribute
research
findings to
National and
International
climate
assessments | Publish assessment report on a key climate impacts topic, incorporating climate scenario results | CCSP SAP 3.4,
Abrupt Climate
Change (GFDL
Lead Author) | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | • | Performance
increase (X) | 3.1X level of
performance
over current
baseline offered
at initial delivery | Successful
acceptance of
replacement
system for
ESRL that
meets
availability and
enhanced
Benchmark
Performance
requirements | 3.28X level of
performance
delivered | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | | Improved 3 Day
Precipitation
Forecasts
(%Accuracy,
model
capability) | 17% (forecast precipitation accuracy) | 19% (forecast precipitation accuracy) | 19% | | 2009 | 3.2 Advance understanding of climate variability and change. | * | * | % of data availability | 99% | At the discretion of the Government the vendor will either deliver additional equipment to make up for any loss of availability below 99% or the Government will reduce its monthly lease payments by the % of time the data was unavailable. | 98.43% | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Terabytes (TB) of storage | 127 TB | Upgrade in
FY07 to 830 TB
of disk space | 847 TB was delivered. | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Performance increase (X) | 1.76X level of
performance
over current
baseline offered
at initial delivery | Successful
acceptance of
replacement
systems for
GFDL that
meets | 1.98x level of
peformance
was delivered | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|---|--|--|--|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | | | | | | contracted
availability and
enhanced
Benchmark
Performance
requirements | | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Performance
Increase over
Base (X) | 4.2X level of
performance
over initial
baseline | Successful acceptance of mid-life upgrade for HPCS sub-system located in Boulder that meets availability and enhanced benchmark performance requirements | Mid-life
upgrades
completed at
Boulder | | | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Weather and
climate
applications
benchmark
performance | Performance on
existing GFDL
and NCEP R&D
systems | Complete
negotiation for
benchmark
performance
during contract
Option Period | Excercised 9 month option to extend the contract in FY10. Plan is to terminate this contract at the end of FY10. | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Terabytes (TB) of storage | 847 TB | 1,497 TB of disk
space | Target achieved | | | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Flow-Following Finite Volume Icosahedral Model (FIM) capable of ingesting live data and producing realistic forecasts | FIM is in initial
development | FIM running at
10KM resolution | FIM global
model was
successfully
developed and
did run at 10km
resolution as
part of HFIP
during
Aug/Sept. Gave
improved
hurricane
intensity
forecasts. | | | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | • | * | Hurricane Track
Error | Reduce by 20% in 10 years | Reduce by 25% in 10 Years | Implementation
of Global
Forecast
system
improves track
by 10% in 2008
case study tests | | | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Contract
benchmark
suites | 228,282
benchmark
suites in FY08 | 321,659
benchmark
suites in FY09 | 358,679 | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Provide focused
assessment
reports based
on climate
scenarios | Contribute
research
findings to
National and
International
climate
assessments | Publish
assessment
report on a key
climate impacts
topic,
incorporating
climate scenario | CCSP SAP 3.2
was published,
with a NOAA
lead. | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|--|--|---|--|--|--| | Fiscal Year |
Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | | | | | | results | | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Help desk
response time | Escalation Levels: Level 0 = 1 business hour; Level 1 = 3 business hours; Level 2-3 = priority/issue dependant | Reduced initial response time and improved time-to-completi on. | Help desk
tickets tracked
througout the
year to ensure
that service
levels to
customers were
being met. | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Implement at
least one new
or updated
component into
the Earth
System Model | Uncertainty in
climate model
projections
remains higher
than desirable | Decrease uncertainty in climate system processes and long-term climate projections measured through improvements in Earth System models | A new component model of ocean biogeochemistry is running in the Earth System model to be used in the IPCC AR5. | | | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Leverage high
performance
computing in
other federal
agencies to
accelerate
meeting mission
goals | NOAA climate
models run
alsmost
exclusively on
NOAA HPC
platforms | Complete validation experiments with ultra-high resoliution atmospheric models and control runs of a high-resolution coupled climate model on DOE HPC platforms | NOAA has used
DOE computing
at ORNL,
NERSC, and
ALCF to
prototype new
climate models
and their
components.
Production use
is scheduled for
2009. | | | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Leverage high
performance
computing in
other federal
agencies to
accelerate
meeting mission
goals | NOAA climate
models run
alsmost
exclusively on
NOAA HPC
platforms | Port new
atmoshperic
and high
resolution
coupled climate
models to DOE
HPC platforms | This port is
complete, and a
number of
validation
experiments
and control
integrations are
underway | | | | 2007 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Provide focused
assessment
reports based
on climate
scenarios | Contribute
research
findings to
National and
International
climate
assessments | Publish assessment report on a key climate impacts topic, incorporating climate scenario results | A draft of CCSP
SAP 3.2 is
complete and is
currently under
NRC review. | | | | 2008 | 3.2 Advance understanding of climate variability and change. | * | * | Decadal
predictive skill in
North America
surface
temperature | Quantification of
climate model
validation is
insufficient | Measure
predictive skill
to monitor the
reduction of
uncertainty in
climate models | High-resolution global model runs for the North American Climate Change Assessment Program (NARCCAP) are complete and are being in analyzed as part of the NARCCAP science program | | | | | | Tab | le 1: Performano | ce Information Ta | ible | | | |-------------|--|---------------------|-------------------------|--|--|--|---| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Perform enhanced climate scenarios designed to address specific decision issues regarding climate change | Perform climate
model scenarios
with current
physics-only
climate models,
as resources
permit. | Simulate 4000
equivalent
model years
towards climate
change
attribution | Development of Earth System models that close the carbon cycle and include ocean biogeochemistry and land ecology is complete and control runs have commenced. | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Explicit
thunderstorm
prediction
experiments | Not done
currently | Experimental
tests with a
WRF-based
high-resolution
(3-5 km)
prediction
system | Performing
experimental
tests with a
WRF-based
3KM prediction
system. (High
Resolution
Rapid Refresh) | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Joint Center for
Satellite Data
Assimilation | Not done
currently | Develop
assimilation of
satellite data
from advanced
sounders in the
NPOESS
Preparatory
Program and
the operational
European
METOP suite | METOP IASI
will be
implemented at
NCEP on 24
February. Work
is proceeding
on NPP
instruments. | | 2008 | 3.2 Advance understanding of climate variability and change. | * | * | NCEP/EMC
National
Integrated
Drought
Information
System | Not done
currently | Develop and test land surface and hydrological prediction systems to support the National Integrated Drought Information System. | NIDIS information is sent regularly to the NIDIS Web site; includes soil moisture anomalies and percentiles of soil moisture, snow water, etc, based on a 30-year climatology of the four land-surface schemes run by NCEP (Noah, VIC, Mosaic, SAC) | | 2008 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | NCEP/EMC
Modeling Test
Bed | Not done
currently | Construct and
test advanced
data
assimilation
techniques for
global model
initial conditions | Advances have
been made in
the NCEP GSI
system and will
be implemented
24 February;
4d-var code has
been delivered
and is being
tested | | 2008 | 3.2 Advance
understanding
of climate
variability and | * | * | Contract
benchmark
suites | 146,066
benchmark
suites in FY07 | 228,282
benchmark
suites in FY08 | 964,163
delivered | | | | Tab | ole 1: Performano | ce Information Ta | ıble | | | |-------------|---|---------------------|-------------------------|--|--|---|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | 2008 | change. 3.2 Advance understanding of climate variability and change. | • | * | Performance
Increase over
Base (X) | 7.54 X level of
performance
over initial
baseline | Successful acceptance of mid-life upgrade for HPCS sub-system located in Gaithersburg that meets availability and enhanced benchmark performance requirements | Mid-life upgrade
completed at
Gaithersburg. | | 2009 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Hurricane
Intensity Error | Reduce by 8% in 10 Years | Reduce by 12%
in 10 Years | Preliminary
results of
coupling HWRF
with HYCOM
improves
intensity
predictions on
2008 cases | | 2007 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | * | * | Improved 1 day
precipitation
forecasts (%
accuracy model
capability) | 30% (forecast precipitation accuracy) | 32% (forecast accuracy) | 31% | | 2007 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | • | • | % of system available | 97% | Vendor will deliver additional equipment to make up for any loss of availability below 97% or the Government will reduce its monthly lease payment by the % of time that the system was unavailable. | 94% was achieved due to the late delivery of the system in Boulder and the numerical reproducibility problems encountered with the Princeton system. | | 2008 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | • | • | % of data availability | 99% | At the discretion of the Government the vendor will either deliver additional equipment to make up for any loss of availability below 99% or the Government will reduce its monthly lease payments by the % of time the data was unavailable. | 96.2% delivered. The underperforman ce was due to problems encountered with the Princeton HSMS | | 2008 | 2.1 Develop | * | * | % of system | 97%
| At the discretion | 95.29 % | | | | Tab | ole 1: Performan | ce Information Ta | able | | | |-------------|---|---------------------|-------------------------|---|---|---|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | tools and capabilities that improve the productivity, quality, dissemination, and efficiency of research. | | | availability | | of the Government the vendor will either deliver additional equipment to make up for any loss of availability below 97% or the Government will reduce its monthly lease payments by the % of time the system was unavailable. | delivered. The
delta was due to
problems with
the Princeton
system | | 2007 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | * | * | Reduced
Atlantic
Hurricane
Forecast 48
Hour Track
Errors (model
capability) | 142 Nautical
Miles | 128 Nautical
Miles | No results
reported | | 2008 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | * | • | Performance
Increase over
Base (X) | 2.79 X level of
performance
over initial
baseline | Successful acceptance of mid-life upgrade for HPCS sub-system located in Princeton that meets availability and enhanced benchmark performance requirements | MId-life upgrade
completed at
princeton.
System
performance
was lower then
expected. | | 2009 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | * | * | Help desk
response time | Escalation Levels: Level 0 = 1 business hour; Level 1 = 3 business hours: Levels 2-3 = priority/issue dependant | Reduced initial
response time
and improve
time-to-completi
on | Help desk
tickets tracked
througout the
year to ensure
that service
levels to
customers were
being met. | | 2009 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | * | * | Expansion of
Rapid Update
Cycle (RUC)
model domain | Current RUC
domain includes
the continental
United States
only | RUC domain to
include Alaska
and Hawaii | Rapid Refresh (RUC replacement covering Alaska, all North America but not Hawaii) now in final testing at ESRL in anticipation of NCEP implementation in 2010. | | 2007 | 2.1 Develop
tools and
capabilities that
improve the
productivity, | * | * | 20 km
resolution RUC
Hybcst code
performance | Existing performance | 2x increase | 1.8x
performance
increase. | | Table 1: Performance Information Table | | | | | | | | | | |--|---|---------------------|-------------------------|--|---------------------------------|---|---|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | quality,
dissemination,
and efficiency
of research. | | | | | | | | | | 2008 | 2.1 Develop
tools and
capabilities that
improve the
productivity,
quality,
dissemination,
and efficiency of
research. | • | • | NCEP/EMC
Climate Test
Bed | NCEP/EMC
Climate Test
Bed | Develop and
test the concept
of multi-model
ensembles for
Seasonal to
Interannual
prediction. | Negotiations
with European
consortium
have stalled as
have
discussions with
GFDL; project is
on hold | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL System
Availability | 96% | 96% | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Network
Availability | 99.9% | 99.9% | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Cumulative number of new decadal prototype forecasts and predictions made with high-resolution coupled climate model | 0 | 1 | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | • | Cumulative number of new decadal prototype forecasts and predictions made with high-resolution coupled climate model | 1 | 1. | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | o ORNL Peak
Computational
Performance | 0 | 260 | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | ٠ | ٠ | Percentage uncertainty in possible 21st century sea level rise (0-1m = 100% uncertainty) | 74% | 74% | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Percentage uncertainty in possible 21st century sea level rise (0-1m = 100% uncertainty) | 55% | 50% | | | | | 2012 | 3.2 Advance | * | * | ORNL Data | 98% | 98% | | | | | | | | | | | | | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|--|----------|--------|----------------|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | understanding
of climate
variability and
change. | | | Availability | | | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL Data
Availibility | 0% | 98% | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Quanity of data
moved over
network | 0 | TBD | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL Peak
Computational
Performance | 260 | 980 | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Cumulative number of new decadal prototype forecasts and predictions made with high-resolution coupled climate model | 2 | 3 | | | | | 2012 | 3.2 Advance understanding of climate variability and change. | * | * | ORNL Peak
Computational
Performance | 980 | 1,106 | | | | | 2012 | 3.2 Advance understanding of climate variability and change. | * | * | Quanity of data
moved over
network | TBD | TBD | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Network
Availability | 0% | 99.9% | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of
regional scale
projections for
assessments &
decision
support. | 2 | 3 | | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Cumulative number of new decadal prototype forecasts and predictions made with high-resolution coupled climate model | 1 | 2 | | | | | 2012 | 3.2 Advance understanding of climate | * | * | Percentage uncertainty in possible 21st | 74% | 65% | | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|---|----------|--------|----------------|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | variability and change. | | | century sea
level rise (0-1m
= 100%
uncertainty) | | | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of regional scale projections for assessments & decision support. | 3 | 5 | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL Data
Availibility | 98% | 98% | | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Percentage uncertainty in possible 21st century sea level rise (0-1m = 100% uncertainty) | 65% | 55% | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change.
| * | * | Number of regional scale projections for assessments & decision support. | 7 | 8 | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL System
Availability | 96% | 96% | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | ORNL System
Availibility | 0% | 96% | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Cumulative number of new functionalities incorporated into Earth System Model to improve realism of climate simulation | 2 | 3 | | | | | 2012 | 3.2 Advance understanding of climate variability and change. | • | • | Improved treatment of key physical processes in climate models aimed at improving: model performance, understanding of uncertainties, and confidence in climate change projections and predictions. | 0 | 3 | | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|---|----------|--------|----------------|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Cumulative
number of
assessments of
carbon, trace
gas and aerosol
budgets and
feedbacks | 0 | 1 | | | | | 2013 | 3.2 Advance understanding of climate variability and change. | * | * | Improved treatment of key physical processes in climate models aimed at improving: model performance, understanding of uncertainties, and confidence in climate change projections and predictions. | 3 | 3 | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | WV System
Availabilty | 0% | 96% | | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | WV System
Availability | 96% | 96% | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Cumulative
number of new
functionalities
incorporated
into Earth
System Model
to improve
realism of
climate
simulation | 1 | 1 | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | WV site data availability | 0% | 99% | | | | | 2014 | 3.2 Advance understanding of climate variability and change. | • | • | Improved treatment of key physical processes in climate models aimed at improving: model performance, understanding of uncertainties, and confidence in climate change projections and predictions. | 3 | 3 | | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|---|--|--|----------------|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | • | * | Perform climate
model scenarios
with physical
climate and
Earth System
models, as
resources
permit. | climate
scenarios
designed to | Simulate 5000 equivalent model years towards the 5th Climate Model Intercomparison Project (CMIP5), in preparation for the IPCC AR5 on NOAA and DOE HPC systems. | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Cumulative
number of new
functionalities
incorporated
into Earth
System Model
to improve
realism of
climate
simulation | 1 | 1 | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | WV System
Availability | 96% | 96% | | | | | 2014 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | WV site data
availability | 99% | 99% | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Uncertainty in
climate model
projections
remains higher
than desirable | Implement at
least one new
or updated
component into
the Earth
System Model | Decrease uncertainty in climate system processes and long-term climate projections measured through improvements in Earth System models | | | | | 2010 | 3.3 Provide
accurate and
timely weather
and water
information. | * | * | Reduce by 8% in 10 years | Hurricane
Intensity Error | Reduce by 12% in 10 years | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | • | • | Contribute
research
findings to
peer-reviewed
literature | Provide focused
report based on
climate
scenarios | Complete a study of the performance of the simulated ozone holes in coupled chemistry climate models worldwide | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | | | Number of sites connected | 3 | 4 | | | | | Table 1: Performance Information Table | | | | | | | | | | |--|--|---------------------|-------------------------|---|--------------------------|---------------------------|----------------|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | % System Availablity at Princeton | 95% | 95% | | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | • | Cumulative
number of new
functionalities
incorporated
into Earth
System Model
to improve
realism of
climate
simulation | 1 | 2 | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of
POAMS
identifed for
ORNL system | TBD | 0 | | | | | 2010 | 3.3 Provide accurate and timely weather and water information. | * | * | Reduce by 20% in 10 years | Hurricane Track
Error | Reduce by 25% in 10 Years | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of
POAMS
identified for
WV system | TBD | 0 | | | | | 2012 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Provide users
with access to
computational
resources at
WV site | 0 | TBD | | | | | 2010 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | % Data
Availability
Princeton | 95% | 95% | | | | | 2013 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Number of
regional scale
projections for
assessments &
decision
support. | 5 | 7 | | | | | 2010 | 3.3 Provide accurate and timely weather and water information. | * | * | % Data
Availability at
Boulder and
Gaithersburg | 99% | 99% | | | | | 2012 | 3.2 Advance understanding of climate variability and change. | * | * | WV site Peak
Computational
performance | 0 | 325 | | | | | 2011 | 3.2 Advance understanding of climate variability and change. | ٠ | ٠ | Number of sites connected | 4 | 5 | | | | | 2013 | 3.2 Advance | * | * | WV site data | 99% | 99% | | | | | | Table 1: Performance Information Table | | | | | | | | | | | |-------------|--|---------------------|-------------------------|--|----------|--------|----------------|--|--|--|--| | Fiscal Year | Strategic
Goal(s)
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Target | Actual Results | | | | | | | understanding
of climate
variability and
change. | | | availability | | | | | | | | | 2010 | 3.3 Provide accurate and timely weather and water information. | * | * | % System
Availability at
Boulder and
Gaithersburg | 97% | 97% | | | | | | | 2011 | 3.2 Advance
understanding
of climate
variability and
change. | * | * | Provide users
with access to
computational
resources at
ORNL | 0 | TBD | | | | | | ### Part II: Planning, Acquisition And Performance Information Section A: Cost and Schedule Performance (All Capital Assets) | | | | | | I Costs to Curr | | | | |---|-----------------------|----------------------|-----------------------|----------------------|-------------------------------|------------------------------|--------------------------------|-------------------------------| | Description
of Milestones | Planned Cost
(\$M) | Actual Cost
(\$M) | Planned Start
Date | Actual Start
Date | Planned
Completion
Date |
Actual
Completion
Date | Planned
Percent
Complete | Actual
Percent
Complete | | NCEP use of
HPC R&D | * | * | 2011-10-01 | | 2012-09-30 | | 0.00% | 0.00% | | Base Funding | \$23.7 | \$18.8 | 2009-10-01 | 2009-10-01 | 2010-09-30 | | 79.00% | 79.00% | | Base Funding | * | * | 2018-10-01 | | 2019-09-30 | | 0.00% | 0.00% | | Base Funding | * | * | 2016-10-01 | | 2017-09-30 | | 0.00% | 0.00% | | Base Funding | \$26.7 | \$26.7 | 2008-10-01 | 2008-10-01 | 2009-09-30 | 2009-09-30 | 100.00% | 100.00% | | Base Funding | * | * | 2010-10-01 | | 2011-09-30 | | 0.00% | 0.00% | | NCEP use of
HPC R&D | * | * | 2012-10-01 | | 2013-09-30 | | 0.00% | 0.00% | | Base funding | * | * | 2012-10-31 | | 2013-09-30 | | 0.00% | 0.00% | | NCEP use of
HPC R&D | * | * | 2013-10-01 | | 2014-09-30 | | 0.00% | 0.00% | | NCEP use of
HPC R&D | \$5.8 | \$5.0 | 2009-10-01 | 2009-10-01 | 2010-09-30 | | 86.00% | 86.00% | | FY07
Installation
and
acceptance of
R&D HPCS | \$26.4 | \$26.4 | 2006-10-01 | 2006-10-01 | 2007-09-30 | 2007-09-30 | 100.00% | 100.00% | | NCEP use of
HPC R&D | * | * | 2014-10-01 | | 2015-09-30 | | 0.00% | 0.00% | | NCEP use of
HPC R&D | * | * | 2017-10-01 | | 2018-09-30 | | 0.00% | 0.00% | | FY09 NCEP
use of HPC
R&D | \$5.8 | \$5.8 | 2008-10-01 | 2008-10-01 | 2009-09-30 | 2009-09-30 | 100.00% | 100.00% | | Base funding | * | * | 2011-10-01 | | 2012-09-30 | | 0.00% | 0.00% | | FY08 Annual
Operations
review | \$25.6 | \$25.6 | 2007-10-01 | 2007-10-01 | 2008-09-30 | 2008-09-30 | 100.00% | 100.00% | | Base funding | * | * | 2013-10-01 | | 2014-09-30 | | 0.00% | 0.00% | | Base Funding | * | * | 2015-10-01 | | 2016-09-30 | | 0.00% | 0.00% | | ARRA
Funding | \$79.2 | \$43.2 | 2009-10-01 | 2009-10-01 | 2010-09-30 | | 56.00% | 54.00% | | FY06 Annual
Operations
review for
Workstreams
7-9 | \$0.5 | \$0.5 | 2005-10-01 | 2005-10-01 | 2006-09-30 | 2006-09-30 | 100.00% | 100.00% | | PY06 Annual
Operations
review for
Workstreams
1-6 (covered
by current
GFDL and
NCEP Exhibit
300s) | \$0.0 | \$0.0 | 2005-10-01 | 2005-10-01 | 2006-09-30 | 2006-09-30 | 100.00% | 100.00% | | | | | | | | | | | | | 1. Comparison of Actual Work Completed and Actual Costs to Current Approved Baseline | | | | | | | | | | | |---------------------------|--|----------------------|-----------------------|----------------------|-------------------------------|------------------------------|--------------------------------|-------------------------------|--|--|--| | Description of Milestones | Planned Cost
(\$M) | Actual Cost
(\$M) | Planned Start
Date | Actual Start
Date | Planned
Completion
Date | Actual
Completion
Date | Planned
Percent
Complete | Actual
Percent
Complete | | | | | NCEP use of
HPC R&D | * | * | 2016-10-01 | | 2017-09-30 | | 0.00% | 0.00% | | | | | Base Funding | * | * | 2017-10-01 | | 2018-09-30 | | 0.00% | 0.00% | | | | | NCEP use of
HPC R&D | * | * | 2010-10-01 | | 2011-09-30 | | 0.00% | 0.00% | | | | | NCEP use of HPC R&D | * | * | 2018-10-01 | | 2019-09-30 | | 0.00% | 0.00% | | | | | NCEP use of
HPC R&D | * | * | 2015-10-01 | | 2016-09-30 | | 0.00% | 0.00% | | | | | ARRA
Funding | \$85.8 | \$75.2 | 2009-04-22 | 2009-06-01 | 2009-09-30 | 2009-09-30 | 100.00% | 88.00% | | | | ^{* -} Indicates data is redacted.